Equivariant Hopf bifurcation for neutral functional differential equations
نویسندگان
چکیده
منابع مشابه
Equivariant Hopf bifurcation for functional differential equations of mixed type
In this paper we employ the Lyapunov–Schmidt procedure to set up equivariant Hopf bifurcation theory of functional differential equations of mixed type. In the process we derive criteria for the existence and direction of branches of bifurcating periodic solutions in terms of the original system, avoiding the process of center manifold reduction. © 2010 Elsevier Ltd. All rights reserved.
متن کاملExistence and continuous dependence for fractional neutral functional differential equations
In this paper, we investigate the existence, uniqueness and continuous dependence of solutions of fractional neutral functional differential equations with infinite delay and the Caputo fractional derivative order, by means of the Banach's contraction principle and the Schauder's fixed point theorem.
متن کاملBogdanov-takens Bifurcation for Neutral Functional Differential Equations
In this article, we consider a class of neutral functional differential equations (NFDEs). First, some feasible assumptions and algorithms are given for the determination of Bogdanov-Takens (B-T) singularity. Then, by employing the method based on center manifold reduction and normal form theory due to Faria and Magalhães [4], a concrete reduced form for the parameterized NFDEs is obtained and ...
متن کاملOscillator death in coupled functional differential equations near Hopf bifurcation
The stability of the equilibrium solution is analyzed for coupled systems of retarded functional differential equations near a supercritical Hopf bifurcation. Necessary and sufficient conditions are derived for asymptotic stability under general coupling conditions. It is shown that the largest eigenvalue of the graph Laplacian completely characterizes the effect of the connection topology on t...
متن کاملHopf bifurcation formula for first order differential-delay equations
This work presents an explicit formula for determining the radius of a limit cycle which is born in a Hopf bifurcation in a class of first order constant coefficient differential-delay equations. The derivation is accomplished using Lindstedt s perturbation method. 2005 Elsevier B.V. All rights reserved. PACS: 02.30.Ks; 02.30.Oz
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2008
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-08-09280-0